A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features.

نویسندگان

  • Robin A A Ince
  • Alberto Mazzoni
  • Andreas Bartels
  • Nikos K Logothetis
  • Stefano Panzeri
چکیده

Mutual information is a principled non-linear measure of dependence between stochastic variables, which is widely used to study the selectivity of neural responses to external stimuli. Here we define and develop a set of novel statistical independence tests based on mutual information, which quantify the significance of neural selectivity to either single features or to multiple, potentially correlated stimulus features like those often present in naturalistic stimuli. If the values of different features are correlated during stimulus presentation, it is difficult to establish if one feature is genuinely encoded by the response, or if it instead appears to be encoded only as a side effect of its correlation with another genuinely represented feature. Our tests provide a way to disambiguate between these two possibilities. We use realistic simulations of neural responses tuned to one or more correlated stimulus features to investigate how limited sampling bias correction procedures affect the statistical power of such independence tests, and we characterize the regimes in which the distribution of information values under the null hypothesis can be approximated by simple distributions (Chi-square or Gaussian). Finally, we apply these tests to experimental data to determine the significance of tuning of the band limited power (BLP) of the gamma [30-100 Hz] frequency range of the primary visual cortical local field potential to multiple correlated features during presentation of naturalistic movies. We show that gamma BLP carries significant, genuine information about orientation, space contrast and time contrast, despite the strong correlations between these features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

The Use of Fundamental Color Stimulus to Improve the Performance of Artificial Neural Network Color Match Prediction Systems

In the present investigation attempts were made for the first time to use the fundamental color stimulus as the input for a fixed optimized neural network match prediction system. Four sets of data having different origins (i.e. different substrate, different colorant sets and different dyeing procedures) were used to train and test the performance of the network. The results showed that th...

متن کامل

Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier

This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 2012